Finite group - Group where the set G has finite element.
The rules :
- List the identity first (use definition G2).
- To find an inverse elements for each element e, a (use definition G3) a' must be either a or e.
- All axioms are satisfied except possibly the associative property. Checking associativity on a case by case basis.
Example 1 : The smallest finite set, {e}.
- Group of one element set (satisfied G1, G2, G3)
Solution :
Let e element of A
e*e element of A
G1 : e element of A
(e*e)*e = e*(e*e)
= e*e
= e
= e*e
= e
G2 :
e*e =e
G3 :
e*e = e
(e*a)*a = a*a = e , e*(a*a) = e*e = e
(e*a)*e = a*e = a , e*(a*e) = e*a = a
(a*e)*a = a*a = e , a*(e*a) = a*a = e
(a*e)*e = a*e = a , a*(e*e) = a*e = a
(e*a)*a = a*a = e , e*(a*a) = e*e = e
(e*a)*e = a*e = a , e*(a*e) = e*a = a
(a*e)*a = a*a = e , a*(e*a) = a*a = e
(a*e)*e = a*e = a , a*(e*e) = a*e = a
Thus,
(e*a)*a = e*(a*a) , (a*e)*a = a*(e*a)
(e*a)*e = e*(a*e) , (a*e)*e = a*(e*e)
(e*a)*e = e*(a*e) , (a*e)*e = a*(e*e)
Hence, {e,a} satisfies the associative property.
Example 2 :
Let a set of two element {e,a}. Construct a table for a binary operation * on {e,a} that gives a group structure on {e,a}.
Soluiton :
0 comments:
Post a Comment